1 6 Se p 20 05 On Manin ’ s conjecture for a certain singular cubic surface
نویسندگان
چکیده
This paper contains a proof of the Manin conjecture for the singular cubic surface S ⊂ P 3 that is defined by the equation x1x 2 2 + x2x 2 0 + x 3 3 = 0. In fact if U ⊂ S is the Zariski open subset obtained by deleting the unique line from S, and H is the usual exponential height on P 3 (Q), then the height zeta function x∈U (Q) H(x) −s is analytically continued to the half-plane ℜe(s) > 9/10. Résumé Ce papier contient une preuve de la conjecture de Manin pour la surface cubiquesingulì ere S ⊂ P 3 définie par x1x 2 2 + x2x 2 0 + x 3 3 = 0. En effet, si U ⊂ S est l'ouvert obtenu en enlevant l'unique droite contenue dans S et H est la fonction des hauteurs usuelle de P 3 (Q), alors la fonction zêta des hauteurs x∈U (Q) H(x) −s peutêtre prolongée demanì ere analytique au demi-plan ℜe(s) > 9/10.
منابع مشابه
Manin's Conjecture for a Cubic Surface
The Manin conjecture is established for a split singular cubic surface in P, with singularity type D5.
متن کاملOn Manin ’ S Conjecture For
This paper establishes the Manin conjecture for a certain non-split singular del Pezzo surface of degree four X ⊂ P 4. In fact, if U ⊂ X is the open subset formed by deleting the lines from X, and H is the usual projective height function on P 4 (Q), then the height zeta function P x∈U (Q) H(x) −s is analytically continued to the half-plane ℜe(s) > 17/20.
متن کاملOn Manin’s Conjecture for Singular Del Pezzo Surfaces of Degree Four, Ii
This paper establishes the Manin conjecture for a certain non-split singular del Pezzo surface of degree four X ⊂ P4. In fact, if U ⊂ X is the open subset formed by deleting the lines from X, and H is the usual projective height function on P4(Q), then the height zeta function P x∈U(Q) H(x) −s is analytically continued to the half-plane 17/20.
متن کاملINHOMOGENEOUS CUBIC CONGRUENCES AND RATIONAL POINTS ON DEL PEZZO SURFACES by
— For given non-zero integers a, b, q we investigate the density of solutions (x, y) ∈ Z to the binary cubic congruence ax + by ≡ 0 mod q, and use it to establish the Manin conjecture for a singular del Pezzo surface of degree 2 defined over Q.
متن کاملManin’s conjecture for a certain singular cubic surface
This paper contains a proof of Manin’s conjecture for the singular cubic surface S ⊂ P with a singularity of type E6, defined by the equation x1x 2 2 + x2x 2 0 + x 3 3 = 0. If U is the open subset of S obtained by deleting the unique line from S, then the number of rational points in U with anticanonical height bounded by B behaves asymptotically as cB(logB), where the constant c agrees with th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005