1 6 Se p 20 05 On Manin ’ s conjecture for a certain singular cubic surface

نویسندگان

  • R. de la Bretèche
  • T. D. Browning
  • U. Derenthal
چکیده

This paper contains a proof of the Manin conjecture for the singular cubic surface S ⊂ P 3 that is defined by the equation x1x 2 2 + x2x 2 0 + x 3 3 = 0. In fact if U ⊂ S is the Zariski open subset obtained by deleting the unique line from S, and H is the usual exponential height on P 3 (Q), then the height zeta function x∈U (Q) H(x) −s is analytically continued to the half-plane ℜe(s) > 9/10. Résumé Ce papier contient une preuve de la conjecture de Manin pour la surface cubiquesingulì ere S ⊂ P 3 définie par x1x 2 2 + x2x 2 0 + x 3 3 = 0. En effet, si U ⊂ S est l'ouvert obtenu en enlevant l'unique droite contenue dans S et H est la fonction des hauteurs usuelle de P 3 (Q), alors la fonction zêta des hauteurs x∈U (Q) H(x) −s peutêtre prolongée demanì ere analytique au demi-plan ℜe(s) > 9/10.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manin's Conjecture for a Cubic Surface

The Manin conjecture is established for a split singular cubic surface in P, with singularity type D5.

متن کامل

On Manin ’ S Conjecture For

This paper establishes the Manin conjecture for a certain non-split singular del Pezzo surface of degree four X ⊂ P 4. In fact, if U ⊂ X is the open subset formed by deleting the lines from X, and H is the usual projective height function on P 4 (Q), then the height zeta function P x∈U (Q) H(x) −s is analytically continued to the half-plane ℜe(s) > 17/20.

متن کامل

On Manin’s Conjecture for Singular Del Pezzo Surfaces of Degree Four, Ii

This paper establishes the Manin conjecture for a certain non-split singular del Pezzo surface of degree four X ⊂ P4. In fact, if U ⊂ X is the open subset formed by deleting the lines from X, and H is the usual projective height function on P4(Q), then the height zeta function P x∈U(Q) H(x) −s is analytically continued to the half-plane 17/20.

متن کامل

INHOMOGENEOUS CUBIC CONGRUENCES AND RATIONAL POINTS ON DEL PEZZO SURFACES by

— For given non-zero integers a, b, q we investigate the density of solutions (x, y) ∈ Z to the binary cubic congruence ax + by ≡ 0 mod q, and use it to establish the Manin conjecture for a singular del Pezzo surface of degree 2 defined over Q.

متن کامل

Manin’s conjecture for a certain singular cubic surface

This paper contains a proof of Manin’s conjecture for the singular cubic surface S ⊂ P with a singularity of type E6, defined by the equation x1x 2 2 + x2x 2 0 + x 3 3 = 0. If U is the open subset of S obtained by deleting the unique line from S, then the number of rational points in U with anticanonical height bounded by B behaves asymptotically as cB(logB), where the constant c agrees with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005